
ENTATION PAGE iA D- A249 589 M* vlatI tbMt W~nnf w &V w O d ft -bftn dm ~ m m~eN

IJIJJJ fjjj1215 Jdlomn 0lub fl.lw. 8di 1U4, kipnm. VA.4 uiLmg d I. 01OIi d Ilmmnu piumy Ma. Om d

Final: 3o Nov 1990 to 01 Jun 1993
4. TME~ AND SUBTITLE 5. FU C

Validation Summary Repo: Concurrent Computer Corporation, C3 Ada Version
1.1v, Concurrent Computer Corporation 6650 with Super Lightning Floating point
under RTU Version S.0C (Host & Target), 901130W1.1107 ELECTE
6. AUHOR(S) MAY 5 1992
Wright-Patterson AFB, Dayton, OH C
USA C
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORM ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-414.0891
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORINGNONITORING AGENCY NAME(S) AND ADDRESS(FS) 10. SPONSORINGIMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

128. DISTRIBUlTION/AVA LABILITY STATEMENT 12b. IW RIBUTIK CODE

Approved for public release; distribution unlimited. r

13. ABSTRACT (Maximun 200 worCs)

Concurrent Computer Corporation, C3 Ada Version 1.1v, Wright-Patterson, AFB, Concurrent Computer Corporation 6650
with Super Lightning Floating point under RTU Version 5.0C (Host & Target), ACVC 1.11.

92-11778
92 4 29 074 111I1IIN1II

14.8sU&IITERMS 15 NUMBER OF PAM

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 1_._PRICE_____

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI4MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY SSIFICATION I. CITY CLASIF 19ATN 10. SECURITY CASSRIFICATUON M
OF REPORT OF ASTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED j

NSN 764001 -280-10 FOrm 20 (Rev. 2-N)
Pecbyb ANS SM. 2*129

AVF Control Number: AVF-VSR-414.0891
1 August 1991

90-10-08-CCC

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901130W1.1107
Concurrent Computer Corporation

C3 Ada Version 1.1v
Concurrent Ccmputer Corporation 6650
with Super Lightning Floating Point

under RTU Version 5.OC
(self-targeted)

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

NT ' -,, ,

Avs iAl d~DstrtPttlV

; m i ll I l / l If i a "==mm H I I I II .UIand/or

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 30 November 1990.

Compiler Name and Version: C3 Ada Version 1.1v

Host Computer System: concurrent computer Corporation 6650
with Super Lightning Floating Point
under RTU Version 5.0C

Target Computer System: Concurrent Computer Corporation 6650
with Super Lightning Floating Point
under RTU Version 5.OC

Customer Agreement Number: 90-10-08-CCC

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate 901130W1.1107
is awarded to Concurrent Computer Corporation. This certificate expires on
1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

6"Direct rI tsr & Software Engineering Division
Institute fo Defense Analyses
Alexandria VA 22311

da Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 2C301

DECLARATION OF CONFORMANCE

Customer: Concurrent Computer Corporation

Ad& Validation Facility: Wright Patterson Air Force Base, Ohio.

ACVC Version: 1.11

Ada Implementaton:

Compiler Name and Version: C 3Ada Version: .lv

Host Computer System: Concurrent Computer Corporation 6650
with Super Lightning Floating point under RTU Version 5.0C

Target Computer System: Same as Host

Customer's Declaration

I, the undersigned, representing Concurrent Computer Corporation, declare that Concurrent
Computer Corporation has no knowledge of deliberate devia;ions from the Ada Language
Standard ANSI/MIL-STD-I815A in the implementation listed in this declaration. I declare that
Concurrent Computer Corporation is the Implementor of the above implementation and the
certificates shall be awarded in the name of Concurrent Pomputer Corporation's corporate
name.

,/ /

Seetharama Shastry (date)
Senior Manager, System Software Development

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1

1.2 REFERENCES.s. *
1-2

1.3 ACVC TESTCLASSES
1-

1.4 DEFINITION OF TERMS

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 VITHDRAVN TESTS 2-1

2.2 INAPPLICABLE TESTS ... 2
2.3 TEST MODIFICATIONS

.. .2-

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1

3.2 SUMMARY OF TEST RESULTS
31.............-

3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX P OF THE Ada STANDARD

CHAPTER 1

IRIDWCTIQN

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Sumnary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INRODUCTION

1.2 REFERENCES

[Ada831 Reference Manual for the Ada Prograsmin2 Lanage,
SI/MIL-~--- 5 F i 1983 and ISO8652-1987.

[Pro90] Ada Compiler validation Procedures, Version 2.1, Ada Joint Program
Mice, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the 'lass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not opirating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. "his behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, sepa-retely compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTODWCTIMt

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly same inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an AC= version.
an Ada
Implementation

Computer A functional unit, consistir? of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

nwoucTdx4

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for T' services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect k-nd not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

C02MT 2

IMPLEMETATICK DEPENCIES

2.1 WITHDRAN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 12 October 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L C83026A C83041A C97116A C98003B BA2O11A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
SC3009B BDlB02B BDIB06A ADIBO8A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B C4024C
CD4024D CD4031A CD4051D CD5111A CD7004C E7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CD201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESI-3

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada inlementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Comentaries and comuonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Conentaries are included as
appropriate.

2-1

INPUT&U'TATION DEPENDENCIES

The following 159 tests have floating-pint type declarations requiring
more digits than SYSTDI.MAX DIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (11 tests) C455210..Z (12 tests)
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55BO9C B86001W C86006C
CD7101F

C35702A, C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT FLOAT.

C41401A checks that CONSTRAINT ERROR is raised upon the evaluation of
various attribute prefixes; thTs implementation derives the attribute
values from the subtype of the prefix at compilation time, and thus does
not evaluate the prefix or raise the exception. (See Section 2.3.)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A checks that the proper exception is raised if MACHINE OVERFLCWS
is FALSE for floating point types with digits 5. For this -
implementation, MACHINE OVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this -
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXT 10
is dependent upon package SYSTEM.

886001Y checks for a predefined fixed-point type other than DURATICN.

C96005B checks for values of type DUM'.TION'BASE that are outside the
range of DURATICN. There are no such values for this implementation.

2-2

I!MPLETATION DEPENDENCIES

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

The tests listed in the following table are not applicable because the
given file operations are not supported for the given combination of
mode and file access method.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL_10
CE2102E CREATE OUT FILE SEQUENTIAL10
CE2102F CREATE mINJr FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT 0
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEaUENIAL_IO
CE21020 RESET IN-FILE SE IO
CE2102P OPEN Of FILE SEQUENTIAL IO
CE2102Q RESET OUT-FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIECT-IO
CE2102U RESET IN-FILE DIRECT 10
CE2102V OPEN O FILE DIREC-IO
CE2102W RESET OUT-FILE DIRECT-10
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Anr Node TEXT-Iu
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXT I0
CE3102J OPEN IN FILE TET-IO
CE3102K OPEN Off FILE TETIO

CE2107C..D (2 tests), CE2107H, and CE2107L apply function NAME to
temporary sequential, direct, and text files in an attempt to associate
multiple internal files with the same external file; USE ERROR is raised
because temporary files have no name.

CE2108B, CE2108D, and CE3112B use the names of temporary sequential,
direct, and text files that were created in other tests in order to
check that the temporary files are not accessible after the completion
of those tests; for this implementation, temporary files have no name.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL 10. This implementation does
not restrict file capacity.

2-3

IMPLEMENTATICN DEPENDENCIES

EE2401D checks whether DIRECT 10 can be instantiated for an element type
that is an unconstrained array type; this implementation raises
USE ERROR on the attempt to create a file, because the maximm potential
element size exceeds the implementation limit of 2**31 - 1 bits.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECf-IO. This implementation does not
restrict file capacity.

CE3111B and CE3115A associate multiple internal text files with the same
external file and attempt to read from one file what was written to the
other, which is assumed to be inmediately available; this implementation
buffers output. (See section 2.3.)

CE3202A expects that function NAME can be applied to the standard input
and output files; in this implementation these files have no names, and
USE ERROR is raised. (See section 2.3.)

CE3304A checks that USE ERROR is raised if a call to SET LINE LNGTH or
SET PAGE LENGTH specifies a value that is inappropriate -or tHe external
file. Tiis implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds CCXJNT'LAST. For this implementation, the value of
CONT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATICNS

Modifications (see section 1.3) were required for 14 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B29001A BC2001D BC2001E BC3204B BC3205B BC3205D

C34007P and C34007S were graded passed by Evaluation Modification as
directed by the AVO. These tests include a check that the evaluation of
the selector "all" raises CONSTRAINT ERROR -hen the value of the object is
null. This implementation determinei the result of the equality tests at
lines 207 and 223, respectively, based on the subtype of the object; thus,
the selector is not evaluated ari no exception is raised, as allowed by LRN
11.6(7). The tests were graded passed given that their only output from
Report.Failed was the message "NO EXCEPTION FOR NULL.ALL - 2".

C35713D and B86001Z were processed incorrectly during validation testing:
the AVF inadvertantly substituted "NO SUCH TYPE" for the macro FLOAT NE
instead of "LENGLNG FLOAT", which ii the-name of a predefined floaEing-

2-4

IMPLEMENTATION DEPENDOCIES

point type in this implementation. This mistake in processing was noticed
after testing had completed, and the AVF asked the customer to process the
tests with the correct macro value; the customer complied with the request
and provided the results of correct processing, which showed that the tests
were passed instead of inapplicable.

C41401A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that the evaluation of attribute prefixes that
denote variables of an access type raises CONSTRAINT MU when the value
of the variable is null and the attribute is approprTate for an array or
task type. This implementation derives the array attribute values from the
subtype; thus, the prefix is not evaluated and no exception is raised as
allowed by LRM 11.6(7), for the checks at lines 77, 87, 108, 121, 131, 141,
152, 165, and 175.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file
is unbuffered and may be immediately read by another file that shares the
same external file. This implementation raises END ERROR on the attempts
to read at lines 87 and 101, respectively.

CE3202A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test applies function NAME to the standard input file, which
in this implementation has no name; USE ERROR is raised but not handled, so
the test is aborted. The AVO ruled that this behavior is acceptable
pending any resolution of the issue by the ARG.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIROET

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Michael Devlin
106 Apple Street
Tinton Falls NJ 07724
(201) 758-7531

For a point of contact for sales information about this Ada implementation
system, see:

Michael Devlin
106 Apple Street
Tinton Falls NJ 07724
(201) 758-7531

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATIN

Total Number of Applicable Tests 3841
Total Number of Withdrawn Tests 81
Processed Inapplicable Tests 89
Non-Processed I/ Tests 0
Non-Processed Floating-Point

Precision Tests 159

Total Number of Inapplicable Tests 248

Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 249 tests wre inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 159 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were configured on a 3280 MPS machine and transferred via tar
tapes to the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the comnunications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATIO

Option Effect

-i Generate a listing file.

-L Specify the name of the file or a directory
for the listing file.

-m Specify the main program name.

-0 Specify the name of the executable image file.

-v Cause the compiler to write a version
identification and information messages
to be displayed.

The listings were printed on a remote system via a remote shell call. Test
output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN-also listed here. These values are expressed
here as Ada string-aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXIN LEN 255

$BIGID1 (l..V-l ,> 'A', V,> '1')

$BIG ID2 (l..V-l -> 'A', V -> '2')
$BIG_-ID3 (l..V/2-> 'A') & '3' &

(1..V-l-V/2-> 'A')

$BIGID4 (l..V/2 -> 'A') & '4' &
(l..V-l-V/2 -> 'A')

$BIG_INT_LIT (1..V-3-> '0') & "298"

$BIGREALLIT (l..V-5-> '0') & "690.0"

$BIGSTRINGI ,"' & (1..V/2 -> 'A') & 1" '

$BIGSTRING2 '"' & (1..V-1-v/2 -> 'A') & '1' & '"'

SBLANKS (1..V-20-> '

SMAX_ L_ INTBAS LITEAL
"2:" £ (l..V-5-> '0') & "11:"

SMAX_LN REALBASEDLITERAL
"16:" & (1..V-7-> '0') & "F.E:"

A-1

PMR PARAMETERS

$MAX_STRING LITERAL "' & (l..V-2-> 'A') & "'

The following table lists all of the other macro parameters and their
respective values:

Macro Parameter Macro Value

$ACC _SIZE 32

$ALIGMENT 4

$CUNTLAST 2147283647

$DEFAULT_MEMSIZE 2147283748

$DEFAULT_STOR_UNIT 8

$DEFAULTSYS_NAME CCURMC68K

$DELTADOC 2#1.0#E-31

$ENTRY ADDRESS SYSTEM. signal_user_2_ref

$ENTRYADDRESS1 SYSTEM.signalchildref

$ENTRY ADDRESS2 SYSTEM.signal_power restoreref

$FIELDLAST 512

SFILE TERMINATOR f 0

$FIXED NAME NO SUCH FIXED TYPE

$FLOATNAME NOSUCHFLOAT TYPE

SFORM STRING "

$FORMSTRING2 "CANNOTRESTRICTFILE CAPACITY"

SGERTER THIAN DUiRATIN
0.0

$GREATER THAN DURATION BASE LAST
- Zoooo6.o

SGREATERTHANFLOAT BASE LAST
- - 16[1.0#+32

$GREATERTHAN FLOAT SAFE LARGE
- -161[0.8#E+32

A-2

MACRO PARAMETERS

$GREATERTHAN SHORT FLOAT SAFE LARGE
0.0

$HIGHPRIORITY 255

$ILLEGALmEXTEL FILE NAME1
-nodi r/filel

$ILLEG ETERNALFILE NAME2
-- 7wrongdir/file2

$INAPPROPRIATELINELNGTH
-1

$INAPPROPRIATE PAGELENTH
-1

$INCLUDEPRAGMA1 PRAGPA INCLUDE ("A28006D1 .TST")

SINCLUDEPRAGA2 PRAGMA INCLUDE ("B28006F1.TST")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGER LAST PLUS1 2147483648

$ INTERFACE LAGE ASSEMBLER

SLESS THAN_ATI ON -0.0

$LESSTHAN DURATION BASE FIRST
-2'60000.0

SLINETMINATOR ASCII.LF

$LOPRIORITY 0

$MACHINECODESTATDMT
NULL

$,jICHINE CODE TYPE NOSUCHTYPE

SMANTISSADOC 31

$MAXDIGITS 18

$MAXINT, 2147483647

SMAX_INT_pUs_1 2147483648

SMININT -2147483638

A-3

NAMR PARAMETERS

$NAME TINY INTEGER

SNAME_LIST CCUR_.MC68K

$NAMESPECIFICATION1 /benl/bpl83/acvcll/chape/X2120A

SNAMESPECIFICATION2 /benl/mpl83/acvcll/chape/X2120B

$NAMESPECIFICATION3 /benl/upl83/acvcll/chape/X3119A

$NEGBASED INT 16#FFFFFFFE#

$NEWMMSIZE 2147483648

$NEWSTORUNIT 8

SNEWSYSNAME CCURMC68K

SPAGETERMINATOR ASCII.LF & ASCII.FF & ASCII.LF

$RECORDDEFINITION NEW INTEGER

SRECORDNAM NOSUCHMACHINECODE TYPE

$TASKSIZE 32

$TASKSTORAGE_SIZE 10240

STICK 1.0/60.0

$VARIABLEADDRESS GETVARIABLEADDRESS

$VARIABLE ADDRESS1 GETVARIABLE ADDRESS1

$VARIABLEADDRESS2 GETVARIABLE ADDRESS2

$YOUR PRAGMA VOLATILE

A-4

APPENDIX B

COMIIATION SYST OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler and linker
documentation and not to this report.

Option Effect

-l If specified, listing file is generated
(listing is not generated by default)

-L This option specifies the name of the
file or a directory for the listing file.
(default filename is sourcefilename.l)

-m This option will specify the main program
name (a parameterless procedure).

-c This option will specify the name of
the library unit on which the completer
should be run. This will cause the
compilation of all generic instantiations.
This option was not specified.

-o This option specifies the name of the
executable image file. This option is
ignored if -m option is not given.

-A This option instructs the compiler to
generate assembly listing. No assembler
listing was required. (not specified).

-C This option instructs the compiler to
copy the source file being compiled
into the program library. (not specified)

B-i

COMPILATION SYSTEM OPTIONS

Option Effect

-S This option tells the compiler to suppress
all run-time checks. (not specified)

-O This option controls the optimization
level of the compiler. (the compiler
performs all optimizations by default)

-I This option tells the compiler to obey
pragma Inline. (default is to obey the
pragma)

-s This option tells the compiler to perform
only the syntax analysis. (not specified)

-v This option causes the compiler to write
a version identification and information
messages to be displayed. This option
was specified. (the default is to
suppress such information)

B-2

APPENDIX C

APPE DIX F OF THE Ada STANARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type TINYINTEGER is range -128 .. 127;

type SHORTINTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -16#0.FFFFFF#E32 .. 16*0.FFFFFF*E32;

type LONG FLOAT is digits 15
range -16#0.FFFFFFFFFFFFF8#E256

16#0. FFFFFFFFFFFFF#E256;

type LONG LONG FLOAT is digits 18
range -16T0.FFFFFFFFFFFFFFFF#E4096

16#0.FFFFFFTFFFFFF#E4096;

type DMRATION is delta 0.00006103515625
range -131072.00 .. 131071.99993896484375;

end STANDAD;

C-1

APPENDIX F
IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.1 INTRODUCTION
The Ada programming language definition requires every Ada compilation system to.
supply an Appendix F containing all implementation-specific aspects of the compiler and
the run-time system.

F.2 IMPLEMENTATION-DEPENDENT PRAGMAS
Table F-1 lists all pragmas In C3Ada predefined as well as implementation-defined.

TABLE F-I. PRAGMA IMPLEMENTATION SUMMARY

PRAGMA IMPLEMENTED COMMENTS
BYTEPACK Yes The elements of an array or record are packed down

to a minimal number of bytes.

CONTROLLED No Not applicable because no automatic storage
reclamation of unreferenced access objects is
performed. The complete storage requirement of a
collection is released when it passes out of scope.

ELABORATE Yes Is handled as defined by the Ada language.
EXTERNAL.NAME Yes Defines the link-time name of a statically allocated

abject or of a subprogram.
INLINE Yes Is handled as defined by the Ada language. with the

following restrictions: The subprogram to be
expanded inline must not contain declarations of
other subprograms, task bodies, generic units, or
body stubs. If the subprogram is called recursively,
only the outer call Is expanded. The subprogram
must be previously compiled, and if it is a generic
instance, it must be previously completed.

INTERFACE Yes Is implemented for the languages C and Assembler.
UST Yes Is handled as defined by the Ada language.
MEMORY-SIZE No You cannot change the number of available storage

units in the machine configuration, which is defined
in package SYSTEM.

OPTIMIZE No Optimization of a compilation can only be
controlled using the -o option on the adac
command line.

PACK Yes The elements of an array or record are packed down
to a minimal number of bits.

PAGE Yes Is handled as defined by the Ada language.
PRIORITY Yes Is handled as defined by the Ada language.

I_ I_ Priorities in the range 0. 255 are supported.

TABLE F-1. PRAGMA IMPLEMENTATION SUMMARY (Continued)

48-555 FOO ROO F-I

PRAGMA IMPLEMENTED COMMENTS
SHARED Yes Is handled as defined by the Ada language.
STORAGE-UNIT No You cannot change the number of bits in a storage

unit which Is defined as 8 in package SYSTEM.

SUPPRESS No Different types of checks cannot be switched on or
off for specific objects: however, see SuPPRESS ALT

SUPPRESS-ALL Yes This pragma allows the compiler to omit the
generation of code to check for errors that may
raise CONSTRAINT RROR or PROGRAMERROR that
may be raised due to an elaboration order problem.

SYSTEM-NAME No You cannot change the system name which is
defined as CCURM C68K in package SYSTEM.

VOLATILE Yes Specifies that every read or update of a variable
causes a reference to the actual memory location for
the variable. That Is, a local copy of the variable is
never made. This is similar to pragma SeiRM",
except that any variable may be specified. This
pragma causes all optimizations on the specific
variable to be suppressed.

F.2.1 Pragma INLINE Restrictions

Inline expansion of subprogram calls occurs only if the subprogram does not contain any
declarations of subprograms, task bodies, generic units, or body stubs. For recursive calls,
only the outer call is expanded. The subprogram body must be previously compiled and if
it is a generic instance, it must be previously completed. If for one or more of these
reasons the inline expansion is rejected by the compiler, a corresponding warning message
will be produced.

F.3 REPRESENTATION CLAUSES

The following subsections describe the restrictions on representation clauses as defined in
Chapter 13 of the Reference Manual for the Ada Programming Language - ANSl/MIL-STD-
1815A-1983.

F.3.1 Length Clauses

A length clause specifies the amount of storage to be allocated for objects of a given type.
The following is a list of the implementation-dependent attributes:

T'SIZE must be <- 32 for any integer, fixed point, or enumeration
type. For any type derived from FLOAT. LONG FLOAT. or
LONGLONG FLOAT, the size must be equal to the default value
selected by the compiler. These are 32, 64. and 96,
respectively. The only value allowed for access types is 32 (the
default value). If any of these restrictions Is violated, the
compiler will report a RESTRICTION error.

F-2 48-555 PO0 ROO

TSTORAGE.SIZE if this length clause is applied to a collection, the exact
amount of space specified will be allocated. No dynamic
extension of the collection will be performnd. If the length
clause is not specified, the collection will be extended
automatically whenever the allocator new is executed and the
collection is full.

T'STORAGE..SIZE If this length clause is applied to a task type, the specified
amount of stack space will be allocated for each task of
corresponding type. The value supplied should not be less
than 1400. If no length clause is specified for a task type, a
default value of 10K bytes is supplied by the compiler. Stack
space allocated for a task is never extended automatically at
run-time.

T'SMALL There Is no implementation-dependent restriction. In
particular, even values of szAi. which are not powers of 2
may be chosen.

F.3.2 Representation Attributes

The Representation attributes listed below are as specified In the Reference Manual for the
Ada Programming Language - ANSI/MIL-STD-1815A-1983, Section 13.7.2.

X'ADDRESS is only supported for objects, subprograms, and interrupt
entries. Applied to any other entity, this attribute yields the
value SYSTEM. ADDRESS_ZERO.

X'SIZE is handled as defined by the Ada language.

R.CPOSITION is handled as defined by the Ada language.

R.CFIRSTBIT is handled as defined by the Ada language.

R.C'LASTBIT is handled as defined by the Ada language.

T'STORAGE.SIZE applied to an access type, this attribute will return the amount
of storage currently allocated for the corresponding collection.
The returned value may vary as collections are extended
dynamically.

T'STORAGESIZE for task types or task objects. this attribute is handled as
defined by the Ada language.

F.3.3 Representation Attributes of Real Types

This subsection lists all representation attributes for the floating point types supported:

P'DICITS yields the number of decimal digits for the subtype P. The
values for the predefined types are 6, 15, and 18 for the-types
FLOAT, LONGJLOAT. and LONG_- LONGFLOAT. respectively.

PMANTISSA yields the number of binary digits in the mantissa of P. Table
F-2 shows the relationship between 'DIG!Ts and '1mImTiSSA.

48-S55 FOO ROO F-3

TABLE F-2. PMANTISSA VALUES

DIGITS MANTISSA DIGITS MANTISSA
1 5 10 35
2 8 11 38
3 11 12 41
4 15 13 45
5 18 14 48
6 21 15 51
7 25 16 55
8 28 17 58
9 31 18 61

P'EPSILON yields the absolute value of the difference between the model
number 1.0 and the next model number above 1.0 of subtype
P. Table F-3 summarizes the values for 'EPSILON.

TABLE F-3. P'EPSILON VALUES

DIGITS EPSILON DIGITS EPSILON
I 16#0.1#EO 10 16#0.4#E-08
2 16#0.2#E-01 11 16#0.8#E-09
3 16#0.4#E-02 12 16#0.1#E-09
4 16#0.4#E-03 13 16#0.1#E-10
5 16#0.8#E-04 14 16#0.2#E-11
6 16#0.1#E-04 15 16#0.4#E-12
7 16#0.1#E-05 16 16#0.4#E-13
8 16#0.2#E-06 17 16#0.8#E-14
9 16#0.4#E-07 18 16#0.1#E-14

P#EMAX yields the largest exponent of model numbers for subtype P.
The values of 'EmAx are given in Table F-4.

TABLE F-4. P'EMAX VALUES

DIGITS EMAX DIGITS EMAX
1 20 10 140
2 32 11 152
3 44 12 164
4 60 13 180
5 72 14 192
6 84 15 204
7 100 16 220
8 112 17 232
9 124 18 244

PSMALL yields the smallest model number of subtype p. The values of
ALLaregiven

F,-4 48-SS5 FOG ROO

TABLE F-5. PSMALL VALUES

DIGITS SMALL DIGITS I SMALL
I 16#0.8#E-05 10 16#0.8#E-35
2 16#0.8#E-08 11 16#0.8#E-38
3 16#0.8#E-11 12 16#0.8#E-41
4 16#0.8#E-15 13 16#0.8#E-45
5 16#0.8#E- 18 14 16#0.8#E-48
6 16#0.8#E-21 1s 16#0.8#E-51
7 16#0.8#E-25 16 16#0.8#E-55
8 16#0.8#E-28 17 16#0.8#E-58
9 16#0.8#E-31 18 16#0.8#E-61

PUARGE yields the largest model number of the subtype P. The values
Of 'LARGE are given in Table F-6.

TABLE F-6. PLARGE VALUES

DIGITS ILARGE
I 16#0.F8#E05
2 16#0.FF#E08
3 16#0.FFE#El1
4 16#O.FFFE#El5
5 16#0.EEFF..C#El8
6 16#0.FFFF..F8#E2 I
7 16#0.FFFFJ.FF#E25
8 1 6#O.FFFF..FFF#E28
9 16#0.FFFFJFFFE#E3 1
10 1 6#0.FFFF..FFFL-E#E35
11 16#0.FFFFJFFF...FC#E38
12 16#0.FFPF.FFFF.FF8#E41
13 1 6#O.FFFFJFFFF"FB#E45
14 1 6#0.FFFF.FFFF..FFF#E48
15 16#O.FFFF,.FFF.FF....E#E5 1
16 1 6#0.FFFL-FFFFFFF..FE#E5
17 1 6#O.FFFF..FFFF..FFFF..FFC#E5 8
18 16#0.FFFF-.FFFFFFFJ-FF8#E6 1

The following attributes will return characteristics of the safe numbers and the
Imnplementation of the floating point types. For any floating point subtype P, the attributes
below will yield the value of the predefined floating point type onto which type P is
mapped. Therefore. only the values for the types FLOAT. LONG-FLOAT. and
WONGWLNGJLOAT are given in Table F-7.

48-SSS FOO ROO F-S

TABLE F-7. IMPLEMENTATION-DEPENDENT ATTRIBUTES FOR FLOAT TYPES

ATTRIBUTE FLOAT LONG-FLOAT LONGLONG..FLOAT
P'SAFE._EMAX 125 1021 16382
P'SAFE._SMALL 16#0.4#E-31 16#0.4#E-255 16#0.2#E-4095
P'SAFE.LARGE 16#0.IFFFJFF#E32 16#0.1FFF.JFFF 16#0.3FFFFFFF_.-

FFFFFC#E256 FFFFFFFE#E4096

P'MACHINE._ROUNDS TRUE TRUE TRUE

P'MACHINLOVERFLOWS TRUE TRUE TRUE-

P'MACHINERADIX 2 2 2

P*MACHINEMANTISSA 24 53 _ 64

P'MACHINE..EMAX 128 1024_ 16384

P'MACHINEEMIN -125 -1021 -16382

F.3.4 Representation Attributes of Fixed Point Types

For any fixed point type T, the representation attributes are:

T'MACHINELROUNDS is TRUE

VMACHINE.OVERFLOWS is TRUE

"'MANTISSA is in the range 1 - 31

VSIZE Is in the range 2 - 32

F.3.5 Enumeration Representation Clauses

The integer codes specified for each enumeration literal have to lie within the range of the
largest integer type of the implementation (which is I=TEGER). The maximum number of
elements in an enumeration type is limited by the maximum size of the enumeration image
table which cannot exceed 65535 bytes. The enumeration table size is determined by the
following generic function:

generic
type ENUMERATI.ON-TYPE is (0);

function ENUMERATION TABLE SIZE return NATURAL;

function ENUMERATION TABLE SIZE return NATURAL is
RESULT : NATURAL •. 0;

begin
for I in ENUMERATION TYPE'FIRST .. ENUMERATION TYPE'LAST
loop

declare
subtype E is EN MERATIONTYPE range I .. I;

begin
RESULT :- RESULT + 2 + E'WZDTH;

end;
end loop;
return RESULT;

end ENUMERATIONTABLE SIZE;

F-6 48-S55 FOO ROO

F.3.6 Record Representation Clauses

With a record representation clause, you can define the exact layout of a record in memory.
Two types of representation clauses are supported: alignment clauses and component
clauses.

The value given for an alignment clause must be either 0, 1. 2. or 4. A record with an
alignment of 0 may start anywhere in memory. Values other than 0 will force the record to
start on a byte address which is a multiple of the specified value. If any value other than 0,
1, 2, or 4 is specified, the compiler will report a RESTRICTION error.

For component clauses, the specifld range of bits for a component must not be greater
than the amount of storage occupied by that component. Gaps within a record may be
achieved by not using some bit ranges in the record. Violation of these restrictions will be
flagged with a RESTRICTION error message by the compiler.

In some cases, the compiler will generate extra components for a r,.cord. These cases are:

* If the record contains a variant part and the difference between the smallest and the
largest variant is greater than 32 bytes and

- it has more than one discriminant or

- the discriminant can hold more than 256 values.

In these cases, an extra component is generated which holds the actual size of the
record.

" If the record contains array or record components whose sizes depend on
discriminants. In this case, one extra component Is generated for each such component
holding its offset in the record relative to the component generated.

The compiler does not generate names for these extra components. Therefore. they cannot
be accessed by the Ada program. Also, it is not possible to specify representation clauses
for the components generated.

F.4 ADDRESS CLAUSES

Address clauses can be used to allocate an object at a specific location in the computer's
address space or to associate a task entry with an interrupt.

Address clauses are supported for objects declared in an object declaration and for task
entries. If an address clause is specified for a subprogram. package, or task unit. the
compiler will report a RESTRICTION error.

For an object. an address clause causes the object to start at the specified location.

F.4.1 Interrupt Entries

Address clauses are supported for task entries. An address clause applied to a task entry
enables an operating system signal to initiate an entry call to that entry. The address
supplied in an address clause for a task entry must be one of the constants declared in
package SYSTE for this purpose.

The interrupt is mapped onto an ordinary entry call. The entry may also be called by an
Ada entry call statement. However, it is assumed that there are no entry calls waiting for
the same entry when an interrupt occurs. Otherwise. the program is erroneous and behaves
as follows:

" If an entry call on behalf of an interrupt is pending, the pending interrupt is lost.

" If any entry call on behalf of an Ada entry call statement is pending, the interrupt entry
call takes precedence. The rendezvous on behalf of the interrupt is performed before
any other rendezvous.

48-SSS FOO ROO F-7

F.5 PACKAGE SYSTEM

The Ada language definition requires every Implementation to supply a package SYS-'ML
In addition to the declarations required by the language, package SYSTEM includes
definitions of certain configuration-dependent characteristics. The specification for the
C3Ada implementation is given below.

package SYSTEM is

type ADDRESS is private;

ADDRESSNULL constant ADDRESS;
ADDRESS-ZERO constant ADDRESS;

function + (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function +" (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function -" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;

function SYMBOLIC ADDRESS (SYMBOL : STRING) return ADDRESS;.
- Returns the address of the external symbol supplied by
- SYMBOL, which must be a string literal. This value can
- be used in address clauses for objects, providing the
- capability of referring to objects declared in C or Assembler.

type NAME is (CCURMC68K);
SYSTEM-NAME : Constant NAME :-CCURMC68K;

STORAGE-UNIT : constant : 8;
MEMORY SIZE : constant : 2 '" 31;
MININT : constant :- - 2 "* 31;
MAX INT : constant : 2 ** 31 - 1;
MAX-DIGITS : constant : 18;
MAX MANTISSA : constant : 31;
FINE-DELTA : constant :-2.0 ** (-31);
TICK constant : 1.0 / 60.0;

type UNSIGNED SHORT INTEGER is range 0 .. 65535;
type UNSIGNED_-TINY_INTEGER is range 0 .. 255;

for UNSIGNEDSHORT INTEGER'SIZE use 16;
for UNSIGNED TINYINTEGER'SIZE use 8;

subtype BYTE is UNSIGNED TINY INTEGER;
subtype ADDRESS-RANGE is INTEGER;

subtype PRIORITY is INTEGER range 0 .. 255;

type SIGNAL is (
SIGNALNULL,
SIGNAL HANGUP
SIGNALINTERRUPT,
SIGNAL QUIT,
SIGNALILLEGAL INSTRUCTION,
SIGNAL TRACETRAP,
SIGNALABORT ,
SIGNAL EMTNSTRUCTION,
SIGNALFLOATINGPOINT_ERROR,
SIGNAL KILL,
SIGNAL_3USERROR,
* SIGNALSE..ENTATIONVIOLATION,
SIGNALBADARGUMNT_7OSYSTMCALL,
SIGNALyIPEiyRITE,

F-8 48-555 FOO ROO

SIGNALALARM,
SIGNALTERMINATE,
SIGNAL_USER 1,
SIGNALUSER 2,
SIGNAL_.CHLD,
SIGNAlPOWER ESTORE,
SIGNAL STOP,
SIGNALTERMINALSTOP,
SIGNALCONTINUE,
SIGNALTERMINAL -INPUT,
SIGNAL TERMINALOUTPUT,
SIGNALINPUT_CHARACTER,
SIGNALSCPUTIME_LIMIT EXCEEED,
SIGNAL FILESIZELIMITEXCEEDED,
SIGNALWINDOW _RESIZED,
SIGNAL OUTOF BANDDATA ON SOCKET,
SiGNAL vRTUAL TIMER_ALARM,
SIGNAL.PROFILINGTIMERALARM,
SIGNAC IO S POSSIBLE);

- SIGNALNULL REF intentionally omitted

SIGNAL HANGUP REF constant ADDRESS;
SIGNALINTERRUPT REF constant ADDRESS;
SIGNAL QUIT REF constant ADDRESS;

- SIGNAL.iLLEGALINSTRUCTIONREF intentionally omitted
SIGNAL.TRACE- TRAP REF constant ADDRESS;
SIGNAL ABORT REF constant ADDRESS;
SIGNAL EMT INSTRUCTION REF constant ADDRESS;

- SIGNAL FLOATING POINT ERROR REF intentionally omitted
- SIGNAL_KILL REF intentionally omitted
- SIGNAL BUSERROR REF intentionally omitted
- SIGNAL SEGMENTATON VIOLATION REF intentionally omitted

SIGNALBAD ARGUMENT TO SYSTE_-CALLREF constant ADDRESS;
SIGNAL PIPE WRITE REF constant ADDRESS;

- SIGNAL ALARM REF intentionally omitted
SIGNALTERMINATE REF constant ADDRESS;

- SIGNALUSERI1_EF intentionally omitted
SIGNAL_USER_2 REF constant ADDRESS;
SIGNALCHILDREF constant ADDRESS;
SIGNAL POWER RESTOREREF constant ADDRESS;
SIGNALSTOPEF intentionally omitted
SIGNALTERMINAL STOP REF constant ADDRESS;
SIGNAL CONTINUEREF constant ADDRESS;
SIGNALTERMINALINPUT REF constant ADDRESS;
SIGNAL TERMINALOUTPUT_REF constant ADDRESS;
SIGNAL7INPUT CHARACTERREF constant ADDRESS;
SIGNAL CPU TIMELIMITEXCEEDED REF constant ADDRESS;
SIGNALFILESIZE_LIMITEXCEEDED REF constant ADDRESS;
SIGNAL WINDOW RESIZED REF constant ADDRESS;
SIGNALOUT OFBANDDATAONSOCKET REF constant ADDRESS;
SIGNAL VIRTUAL TIMERALARM REF constant. ADDRESS;
SIGNAL PROFILING TIZIERALARMREF constant ADDRESS;
SIGNAL_1O IS POSSIBLE REF constant ADDRESS;

48-SSS FOO ROO F-9

type PROCESS ID is new INTEGER;
subtype ASTNUMEER is INTEGER range 65..128;
type AST PRORITY is range 0..32767;
for ASTPRIORITY'SIZE use 32;

- definitions for AST support.

function TOCROUTINE (ADA ROUTIE : ADDRESS) return ADDRESS;
-- Converts an address of an Ada routine to an address
- of a C routine that can be used as an AST handler.

- This routine allocates some space on the heap
and initializes it with code that changes the

- C calling conventions into Ada calling conventions
- so that the caller thinks that a C routine is being
- called.

type EXCEPTION-ID is new INTEGER;

NO EXCEPTIONID : constant EXCEPTION ID - 0;

- Coding of the predefined exceptions:

CONSTRAINTEERORID : constant EXCEPTION ID : 16#0002 0000#;
NUMERIC_ERRORID : constant EXCEPTION ID 1610002700011;
PROGRAMERROR ID : constant EXCEPTION ID : 16#000270002#;
STORAGE-ERRORID : constant EXCEPTIONID : 16#000200031;
TASKINGERROR-ID : constant EXCEPTION ID : 161000200041;

STATUS ERRORID : constant EXCEPTION ID : 16100020006;
MODE ERROR-ID : constant EXCEPTION-ID :- 161000200071;
NAME ERROR ID : constant EXCEPTION ID : 16#0002 0008#;
USEERROR1ID : constant EXCEPTIONID : 1610002_00091;
DEVICE ERROR ID : constant EXCEPTIONID : 1610002OOOA#;
ENDERROR ID : constant EXCEPTION ID : 1610002_000B#;
DATA ERRORID : constant EXCEPTION ID : 1610002000C;
LAYOUT ERRORID : constant EXCEPTION _D :- 1610002_OOOD#;

TIMEERRORID constant EXCEPTION ID : 16#0002_000E#;

NO ERROR CODE : constant :- 0;

type EXCEPTION-INFORMATION
is record

EXCP ID :EXCEPTION ID;
- Identification of the exception. The codings of
- the predefined exceptions are given above.

CODEADDR : ADDRESS;
- Code address where the exception occurred. Depending
- on the kind of the exception, it say be the address of
- the instruction which caused the exception, or it
- may be the address of the instruction which would
- have been executed if the exception had not occurred.

SIGNAL : SYSTEM.SIGNAL;
- Signal that caused this exception to be raised,
- else SIGNAL NUIL.

end record;

procedure GETEXCEPTIONINFORMATION
(EXCP INFO : out EXCEPTION INFORMATION);

- This subprogram must only be called from within an exception
- handler BEFORE ANY OTHER EXCEPTION IS RAISED. It then returns
- the information record about the actually handled exception.
- Otherwise, the result is undefined.

F-lO 48-555 FOO ROO

function INTEGER TO ADDRESS (ADDR ADDRESS RANGE) return ADDRESS;
function ADDRESSTOINTEGER(ADDR ADDRESS) return ADDRESS-RANGE;
pragma INLINE(INTEGER TOADDRESS, ADDRESSTO INTEGER);

- Conversion between address and irteger types.

type EXIT STATUS is new INTEGER range 0 .. 2"*8-i;
NORMAL EXT constant EXIT-STATUS :- 0;

ERRNO : INTEGER;
for ERRNO use at SYMBOLIC ADDRESS("_errno");

- Allows access to the ERRNO set by the last system call, C, or
- assembler routine call that was made on behalf of the calling
- task.

procedure EXITPROCESS(STATUS : in EXITSTATUS :- NORMALEXIT);
- Terminates the Ada program with the following actions:
- All Ada tasks are aborted, and the main program exits.
- All I/O buffers are flushed, and all open files are closed.

private

- Implementation-defined

end SYSTEM;

F.6 TYPE DURATION

DURATION'SMALL is 2-" seconds. This number is the smallest power of two which can
represent the number of seconds in a day in longword fixed point number representation.

SYSTEM.TICK is equal to 1.0 / 60.0 seconds. DURATION'SMALL is significantly smaller than
the actual computer clock-tick. Therefore, the accuracy with which you can specify a delay
is limited by the actual clock-tick and not by DURATION'SMALL. Table F-8 summarizes the
characteristics of type DURATION-

TABLE F-8. TYPE DURATION

U VAPPROXIMATEA'TRIBUTE VALUE VALUE

DURATION'DELTA 2#1.0#E-14 - 61 us

DURATION'SMALL 2# 1.0#E-14 - 61 As
DURATION'FIRST -131072.00 - 36 hrs

DURATION'LAST 131071.99993896484375 - 36 hrs

DURATION'SIZE 32

48-SSS FOO ROO F-Il

F.7 INTERFACE TO OTHER LANGUAGES

The pragma INTERFACE iS implemented for two programming languages: C and Assembler.
The pragma has the form:

pzagma INTERFACE (C, subprogram-name),

pragma INTERFACE (ASSEMLER, subprogram-name);

Here. subprogram-name is a subprogram declared In the same compilation unit before the
pragma.

The only parameter mode supported for subprograms written In the C language is in. The
only types allowed for parameters to subprograms written in the C language are INTEGER,
LONG-FLOAT. and SYSTEM.ADDRESS. These restrictions are not checked by the compiler.

Details on interfacing to other languages are given In Chapters 6 and 7.

F.8 INPUT/OUTPUT PACKAGES

The following two system-dependent parameters are used for control of external files:

e the NAME parameter
e the FORM parameter

The NAME parameter must be a legal RTU pathname conforming to the following syntax.

pathname ::- [/3 C dirname (/ dirname]/ filename

dirname and filename are strings of up to 14 characters length. Any characters except
AsCII. UL, * ' (blank), and 'I' (slash) may be used.

The following is a list of all keywords and possible values for the FORM parameter in
alphabetical order.

APPEN > FALSE TRUE Only applicable to sequential and text files. If
TRUE is specified in an OPEN operation, the file
pointer is positioned to the end of the file. This
keyword is ignored in a cRATE operation. The
file mode must be n rz.. The default is
APPEND -> FALSE.

MODE - numeric-literal This value specifies the access permission for an
external file. It only takes effect in a -m.ATE
operation. It is Ignored in an OPEn operation.
Access rights can be specified for file owner.
group members, and all users. The
numeric.Jiteral has to be a three digit octal
number. The single bits of this number have the
following meaning:

F-12 48-S5S FOO ROO

8#400# read access owner
8#200# write access owner
8#100# execute access owner
8#040# read access group
8#020# write access group
8#010# execute access group
8#004# read access all others
8#002# write access all others
8#001# execute access all others

You can specify any sum of the above. The
default value is 8#666#.

Note that the RTU operating system will subtract
the process's file mode creation mask from the
mode you have specified. You can change the file
mode creation mask with the RTU command
umask (see the RTU Programming Manual). For
example, if your session has a file mode creation
mask of 8#022# and you create a file with mode
8#666#, the file will actually be created with the
privileges 8#644#.

RECORDJrORMAT,-> VARIABLE I
FIXED This parameter is only allowed for sequential

files. The default value is VR.aRABLE.

RECORDSZzE -> numeric-literal Only applicable to sequential and direct files. It
specifies the number of bytes in one record.
This parameter is only allowed for files with a
fixed record length. When specified in an OPEN
operation. It must agree with the corresponding
value of the external file. If ELEMENT TYPE is a
constrained type. the maximum size of
ELEMENT-TYPE rounded up to the next byte
boundary Is selected by default. If
ELEMENT TYPE is an unconstrained array type
and you want a fixed record length file. this
parameter must be specified.

TRUNCATE - >FALSE I
FIXED Only applicable to sequential files. The

FILE-MODE must be OUT rLE. When TRUE is
specified in an OPEN operation, the file size is
truncated to zero. The previous contents of the
file is deleted. If FALSE is specified, the file is
not changed initially. If less records than the
initial file size are written, old records will
remain unchanged in the file. This parameter is
ignored for CREATE operations. The default
value is TRUE.

F.8.1 Text Input/Output

There are two implementation-dependent types for TEXT_=: CouiT and FIELD. In C'Ada
they are implemented as:

type COUNT is zange 0 .. INTEGER' LAST;
subtype FIELD is INTEGER range 0 .. 512;

48-SSS FOO ROO F-13

The line terminator is implemented by the character ASCIi.LF. the page terminator by the
sequence ASCII. LF. ASCII. FF, ASCII. LF. There is no character for the file terminator. End
of file is deduced from the file size.

F.9 UNCHECKED PROGRAMMING

F.9.1 Unchecked Storage Deallocation

The generic function UNCHECKED DEALLOCATION is supported as specified in the Reference
Manual for the Ada Programming Language - ANSI/MIL-STD-181 5A-1983. Section 13.10.

F.9.2 Unchecked Type Conversion

The generic function UNCHECKED_CONVERSION Is supported as specified in the Reference
Manual for the Ada Programming Language - ANSI/MIL-STD-1815A-1983. Section 13.10.
However, the following restrictions apply.

The generic parameter TARGET must not be an unconstrained array type. If TARGET' SIZE >
SOURCE'SIZE, the result of the conversion will be unpredictable. On the other hand, if
TARGET'SIZE (SOURCE' SIZE. the left-most bits of the source will be copied to the target.

F.10 IMPLEMENTATION-DEPENDENT RESTRICTIONS

The following is a list of implementation-dependent restrictions of the compiler.

" The maximurm length of a source line is 255 characters.

" A program library may contain no more than 16381 compilation units.

" A single compilation unit may not contain more than 65534 lines of Ada source text.
(Depending on the complexity of the code, the actual number of lines acceptable may be
considerably smaller than the upper limit.)

" The number of directly imported units for a single compilation unit may not exceed
255. Directly imported units are those referenced by with clauses.

* The maximum number of nested uepazatos is 511.

* The main program must be a parameterless procedure.

" The maximum length of an Identifier is 255 (maximum line length). All characters of an
identifier are significant.

" The maximum number of bits of any object is 231 - 1.

" The maximum length of a pathname is 255 characters.

" The maximum length of a listing line is 131 characters.

" The maximum number of errors handled is 1000.

" The maximum number of units that may be named in the pragma ELABORATE of a
compilation unit is 255.

" The maximum total size for text of unique symbols per compilation Is 300000 bytes.

• The maximum parser stack depth is 10000.

" The maximum depth of nested packages is 511.

" The maximum length of a program library name is 242 characters.

F-14 48-555 FOO ROO

, The amount of statically allocated. non-initialized data in a comphiauon unit cannot
exceed nTEGER, LAST bytes.

* The amount of statically allocated, initialized data in a compilation unit cannot exceed
niTEGER' LAST bytes.

F.11 UNCONSTRAINED RECORD REPRESENTATION

Objects of an unconstrained record type with array components based on the discriminant
are allocated using the dlscriminant value supplied in the object declaration. However, if
no discriminant is supplied in the object declaration, the compiler will choose the
maximum possible size. For example:

type DYNAMIC_STRING (LENGTH : NATURAL -- 10) is
record

STR : STRING (1 .. LENGTH);
end zecord;

DSTR : DYNAMICSTRING;

For the record DSTR. the Compiler would attempt to allocate NATURAL'LAST bytes.
However. this is more than 2 GBytes. As a consequence. CONST.INWT0ERROR would be
raised. On the other hand, the declaration

CSTR : DYNA4ICSTRING (80);

causes no problems. The compiler would allocate 84 bytes for CSTR.

F.12 TASKING IMPLEMENTATION

The C3Ada system Implements fully pre-emptive and priority-driven tasking. Pre-emptive
means that task switches may take place even when the currently running task does not
voluntarily give up processor control. This may happen when a task with a high priority is
waiting on an external event (the time period specified in a delay statement expires). When
this event occurs, processor control is passed to the waiting task immediately if it has the
highest priority of the tasks ready to run.

The C'Ada run-time system keeps track of all tasks in two categories: tasks which are
ready to run and those that are suspended because they are waiting for something (e.g.. a
rendezvous to occur or waiting in a delay statement). The tasks ready to run are sorted in
a queue by priority (high priorities first). Within one priority, they are sorted in the order
in which they entered the "ready" state (tasks waiting longer are served first). Whenever
the run-time system needs a task to schedule, the first task in the queue is selected and
run.

The accuracy of delay statements is governed by the resolution of the operating system
clock which is 1.0/60.0 seconds (SYSTEM.TICK). Although the resolution of the type
DURATION is much higher (2.14 seconds), task switches caused by the expiration of a delay
can only take place on a clock tick. A task waiting in a delay enters the "ready" state when
the next clock tick after its delay period has expired.

Another implementation-dependent aspect of tasking is the stack size of each task. All task
objects of a task type with a length clause and all tasks of an anonymous task type have a
stack space of 10K bytes. For task types, a length clause may be given. The specified
amount of storage space will be allocated for each task object of that type.

In addition to stack space, a task control block is allocated for each task object. It occupies
250 + 20 * number-o._entriu bytes. The task control block is deallocated when the task
passes out of scope.

48-555 FO0 ROD F-IS

A program is erroneous if any of the following operations are performed simultaneously
by more than one task:

* The allocator aew Is evaluated for the same collection.

• Input-Output operations are performed on the same external file.

A C3Ada task is not implemented as an independent operating system process; rather. tfe
whole Ada program Is one operating system process which does not use threads.

F-16 48-555 FOO ROO

